
Estimated schedule

Time	Task	Leads
9:30 - 9:45	CS ML - Intro (15 min)	All (GL leads)
9:45 - 10:00	CS ML - Raising questions (15 min)	GR
10:00 - 10:10	CS ML - Thinking tool (10 min)	GR
10:10 - 10:15	CS ML - Team formation (5 min)	GL
10:15 - 10:45	CS ML - Investigation 1 - toy problem (30 min)	All (walk around)
10:45 - 11:00	CS ML - Thinking tool - accuracy calculation (15 min)	GL
11:00 - 11:30	CS ML - Investigation 1 - cont. (30 min)	All (walk around)
11:30 - 11:45	CS ML - Thinking tool - Introduce real world data and Python jupyter notebook with Google Collab, sklearn, etc. (15 min)	LA
11:45 - 12:45	Lunch for 38 interns + 12 staff (50 total) - Medical + Registration	All
12:45 - 1:30	CS ML - Recap + Investigation 2 - real world problem (30 min)	All (LA leads; walk around)
1:30 - 1:40	CS ML - [Facilitate as necessary] Checkpoint - train/test, model complexity tradeoff (10 min)	All (walk around)
1:40 - 2:30	CS ML - Investigation 2 - cont. (50 min)	All (walk around)
2:30 - 2:40	CS ML - [Facilitation as necessary] Checkpoint - predict new data (10 min)	All (walk around)
2:40 - 3:00	CS ML - Investigation 3 - predict and reflect on new outcome (20 min)	All (walk around)
3:00 - 3:15	CS ML - Prep for jigsaw (15 min)	LA
3:15 - 3:45	CS ML - Jigsaw presentation (3 groups) - CAT (30 min)	All (separate group)
3:45 - 4:00	CS ML - Synthesis + practice reflection (15 min)	All (GL leads, but all will talk)

Content rubric: decision trees	Things to notice
A decision tree predicts a desired attribute of a dataset.	What is the input and the output of the model?What are you trying to predict?
The process of choosing the "best" feature to split the tree on at each level.	 How did you decide which feature to use for the root node? Intuition? Random? How many features did you pick? Did you try them all or only a subset? How do you grow the rest of the tree? How good is the model once you decided on a feature for a node? When do you stop growing the tree?
A metric, accuracy, is used to determine model goodness.	How to calculate it?Can you calculate it for your model?
Tradeoffs between accuracy and complexity of the model.	 Plot the two properties and observe the relationship. Can you pick a best model based on trade-off plot? Why is it the best model?

STEM practice rubric: optimization	Things to notice	
Describe and use a metric to determine model goodness.	 Describe the metric - what does it mean, how to calculate. Apply to the model and calculate the results. 	
Identify and justify important features in the model.	 How to decide whether a feature is important? (Do this at least for the root node for our content) 	
Perform trade-offs between two desirable but incompatible properties of the model to optimize for best model.	 What are the two properties used for trade-off in this case? What is the relationship between them? How to optimize for best model using this trade-off? 	

Preparing for Jigsaw presentation

Content Prompt:

Build a decision tree to accurately predict a desired attribute of a dataset. Explain or justify how your decision tree solves this predictive problem and maximizes the prediction accuracy.

- Present your final model accuracy and supporting artifacts
 - Visualization of the final decision tree model
 - Trade-off plot that supports your decision on such pick
- Present your new prediction on the new dataset and summarize your thoughts.